
```
‡,
                                                  ‡†,
                                                               , 100037,
                                                                210016,
                ‡
                                                                , 36 4 -5305,
                 (Received 1
                                2015, accepted
                                                  2016 first published online 1
                                                                           2016)
         Ab ac
             (
                 )
                                                                           ~4 5
                                     ~400
                      ε (t) (13 20)
                                                                                      ),
1. I . c...
                           & , 200,
( . . et al. 200,
                       et al. 2012, 2013,
 et al. 2012,
et al. 2013),
                                                                                                ),
                                                   & ( ö, 2000,
          , 1 7,
                          et al. 200, et al.
                                                                        et al. 2002, et al. 2004,
200 a).
                                                   200 a) ( .1).
                             , 1 77,
                                                                             et al. 200 a,b,
                             et al. 2000,
                                                                    , 2012).
        , 2003,
                      et al. 200, , 2014).
                         &
                                  (2011)
                                                                              et al. 2003,
                                                                  , 1 3,
                            (2014)
                                                   2003,
                                                            et al. 200 a) ( . 1 ).
                          16.
```

```
48°N
                                                                                             ካን
                                                                               40km
                                                         Proterozoic?-Ordovician schists Faults
     1. ( )
                                                        ( )()
      et al. 200 ).
                                                             > 0% ( .3, ).
                          (1)
                                                   et al. 2013).
                                                             (40 70%)
                                                                                       (30 50%)
         (2)
                                                                             (5 10%)
                                                          ( .3).
2. R ... a ...
2).
                                                                       ( )
( )( et al. 2006).
               ( .3).
           15
                   ).
5
                                                                           , 1 3).
```



```
20
3. A a .ca . c
3.a. Z. c., U Pb a., a. H •
                                                    3.c. W
(2013 01, 46° 32 51 , °2 4
      (2013 	 02, 46^{\circ}33 	 2)
                                                                                    100
                                                                                               et al.
                                                    (2004).
                                                    2%.
                                                                       6000 -
                                                                        et al. (2004).
                                                                                              50
                                                                                                 -2,
                                                    3,
                                                                          3 5%.
et al. (2011).
                                           et al.
2010)
                       , 2003).
                     5%
                            2,
          12 0
                                                                  et al. (2004).
                                                       143 /144
                                                            146 /144
                                                    0.11 4
                                                                           = 0.721,
                          1 /16
      et al. (2010a).
                                                                            0.70506
                          ,^{1} /^{16} = 0.0020052),
                                                    143 /144
                                                                            0.512104
                                                    1 0.512671
                                                                          -1.
                                                                                        2.
                                5.31 ‰ ( et al.
2010b).
                                                    4. A a ca
  \delta^1 \qquad 5.44 \pm 0.21 \, \% \, (2 \quad ),
                                                    4.a. Z c U Pb a
                                     5.4\pm0.2\,\%
( et al. 2013).
                                    3
   1/
                                                                100
                                                                      150 μ
                                                         1.1
                                                                2.1.
3.b. M. a a a
                                        00
                                                                             (22 123
                                                       0. .
                                                                                   30
            15
                                                                                      4 5. \pm 2.5
                                          15
```

1. ,

			,							
	2013 01-1	2013 01-3	20132 01-4	2013 01-5	2013 01-6	2013 01-7	2013 01-	2013 01 1	2013 01 2	2013 01 4
					Major elements	: (%)				
2	3 .70	4 .20	3 .41	3 .62	3 .22	3.2	3 .05	47.22	46.4	51.27
2	0.05	0.20	0.05	0.05	0.04	0.05	0.04	0.14	0.12	0.27
2 3	0.61	1. 6	1.04	0.67	0. 0	0.74	0. 0	1 .2	1 .64	1 .33
2 3	.44	4.6	Y. Y	.36	7.57	7.16	7. 4	3.67	3.24	3.
	0.0	0.10	0.11	0.11	0.11	0.0	0.11	0.0	0.07	0.0
	3 .21	24.5	3.2	37.	3 .0	3 .31	3 .44	10.04	.03	5.
	0.12	15.42	0.15	0.14	0.2	0.10	0.145724.	1(10. 0)21		

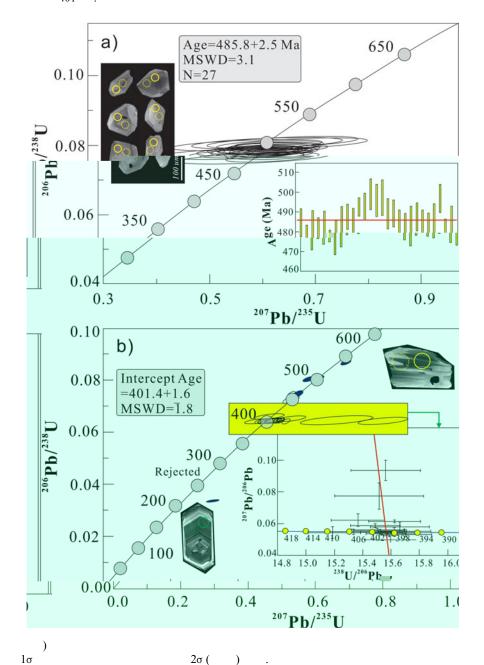
	2013 01-1	2013 01-3	20132 01-4	2013 01-5	2013 01-6	2013 01-7	2013 01-	2013 01 1	2013 01 2	2013 01 4
	0.005	0.064	0.00	0.005	0.00	0.003	0.003	0.051	0.044	0.222
	0.021	0.347	0.044	0.042	0.072	0.031	0.033	0.310	0.257	1.450
	0.004	0.047	0.007	0.00	0.011	0.005	0.005	0.04	0.043	0.21
	0.011	0.232	0.036	0.044	0.012	0.034	0.00	0.123	0.0 0	0. 3
	0.0	0.036	0.03	0.037	0.06	0.026	0.025	0.046	0.031	0.067
	0.26	1.710	6.600	1. 0	0. 3	0.233	1.150	1.570	0.516	0.1 5
	0.406	0.0 2	0.127	0.112	0.0	0.1	0.054	0.16	0.1 1	0.6 5
	0.046	0.034	0.014	0.02	0.050	0.030	0.010	0.050	0.02	0.130
	0.1 1	0.144	0.203	0.364	0.042	0.0 4	0.07	0.066	0.042	0.073
	2013 01 5	2013 01 6	2013 01 7	2013 01	2013 01	2013 03 2	2013 03 3	2013 03 4	2013 03 5	2013 01 3
			(1)	(1)	(1) Major elements (%	(1)	(1)	(1)	(1)	(2)
2	4 .17	45. Y	4 .7	53.1	51. 1	50.40	50.54	50.52	51.22	52.37
$\overset{2}{2}$	0.34	0.15	1.40	1.24	1.31	1.70	1.63	1.31	1.17	0.33
2 3	1.	1 .5	16.5	16.1	15. 3	15. 7	16.76	15.55	15.4	1 .61
2 3	4.52	3.34	Ÿ.	7.11	7.43	.0	.50	.42	7. 2	3.44
	0.0	0.0	0.11	0.10	0.11	0.13	0.11	0.14	0.12	0.07
	6. T	7.42	4. 0	4.2	4.41	5.	3.2	6.06	7.14	4.
	11.03	12.61	6.22	5.75	6.3	6.75	4.52	7.4	.26	. 0
2	4. 6	7.3	.72	.3	.00	4.52	7.31	4. 0	4.0	7.11
2	0.13	0.11	0.3	0.31	0.42	2.04	0.33	1.27	2.03	0.17
$\frac{2}{2}$ 5	0.04	0.02	0.62	0.62	0.65	0.74	0.6	0.47	0.44	0.04
	3.72	3.26	4.24	2.54	2. 3	2.27	5.14	2.65	1. 3	2.7
	.75	. 2	.76	.70	.4	.40	. 1	.67	.6	.71
	4.	7.4	.11	.70	.42	6.56	7.64	6.0 y	6.11	7.2
#	75	1	55	54	54	56	41	56	64	74
					Trace elements (pp	m)				
	.0	4. 5	1.16	1.12	1.47	.0	40.4	5.2	6. 2	5.71
	0.22	0.135	1.2 4	1.6 3	1.316	1. 53	1.034	1.100	0.575	0.62
	25.0	23.	1 .6	17.5	17.5	7.5	1 .2	25.2	1.	17.0
	11	3.7	1 6	166	172	227	22	254	1 7	75.7
	34.7	163	60.5	62.6	64.1	116	1.	0.7	203	23.7
	24.2	21.6	26.	23.6	24.6	2 y .	2 .5	2 .0	2 .0	16.4
	4.7	175	63.6	50.7	51.4	76.	27.7	57.3	132	71.1
	52. 4	55.5	-616 .1(52	. 4)-56 4. (55.73.5	(1.3)-630 . 1 (4. (0.	! . (16. 7 6)-56)	1 (0.066)-567(5-1.05	6 11322)-624	042(15.55)-56	4(3, 4)-56 4. (15)

52. 4 55.5 -616 .1(52. 4)-56 4. (55.\frac{13.5\frac{1}{3}.5}{3}\frac{1240.1(44)}{3} 5241 1 .1(1\frac{1}{5})-51 5 (.1\frac{1}{5})-31 (2\frac{1}{4}\frac{1}{1}).(1\frac{1}{5})-3.61(0.02).2(.\frac{1}{5})-3.61(0.02).2(.\frac{1}{5})-5\frac{1}{1}.(1\frac{1}{5})-5\frac{1}{1}.(0.050) 0 -20.03\frac{1}{2}.(0.050) 0 -20.

1.

2012	01 5	2012	01 (2012	01 *	2012	0.1	2012	0.1	2012	02.2	2012	02 2	2012	02 4	2012	02 5	2012	01 2
2013	01 5	2013	01 6	2013	01 7	2013	01	2013	01	2013	03 2	2013	03 3	2013	03 4	2013	03 5	2013	01 3
				((1)		(1)	((1)		(1)		(1)	((1)		(1)	((2)
3	. 7	1	.20	3	.60	46	5.70	41	1.30		3.40	4	3.00	2.5	5.20	32	2. 0	6	5.56

2013 01 11	2013 02 1	2013 02 2	2013 03 1	2013 03 6	2013 01 10	04 06	04 24	04 2	03 17
(2)	(2)	(2)	(1)	(1)	(2)	(1)	(1)	(1)	(
	2.0	40.4	Trace elem	ents (ppm)	4.5	,	,	,	,
1 .4	36.	42.4	26.0	32.4	17.	/	/	/	/
0.3 5	0.153	0.35	1.1	0. 47	0.46	/	/	/	/
32.5	33.2	34.5	25.1	26.3	32.1	13.4	20.5	17.7	20.3
1 4	203	217	337	341	1 5	144	1 4	214	265
56.5	44.2	4 y .	1.	22.2	53.	15	162	214	265
34. y	37.5	3 .3	23.1	24.	33.	20.6	30.	2 .	20.2
66.4	4.6	76.4	25.4	27.1	66.6	.1	114	75.5	7.02
6.4	236.4	256.7	205.4	20 .	114.20	/	/	/	/
4 .0	44.1	4 .0	4.	103	44.1	/	/	/	/
12.0	11.1	11.2	14.7	13.6	12.0	/	/	/	/
0.5	1.420	1.070	3.130	3.270	0.5 3	4.	1 .1	22.0	17.2
y 1	1750	5	270	24	6 6	7 1	31	111	776
13.0	13.0	13.2	21.1	22.	12.5	13.2	13.2	14.7	20.1
54.	42.3	41.5	144	154	52.	243	133	164	151
1.2	0. 47	0. 55	11.315	11. 5	1.257	20.2	12.7	21.	12.2
0.025	0.030	0.027	0.051	0.052	0.02	/	/	/	/
0.3 1	0.2 6	0.32	1.560	1.450	0.360	/	/	/	/
0.2	1.720	1.030	0.365	0.406	0.336	/	/	/	/
117	372	346	25	50 y	4.3	/	/	/	/
10.70	7. 40	7.610	26.40	26. 0	10.50	30.6	32.2	40.1	26.4
23.00	1.0	1 .40	51.50	54.70	22.30	5 7 .	62.	2.3	52.5
2.770	2.520	2.510	5.750	6.1 0	2.670	6. 7	7. 4	10.5	6.4
11. 0	11.70	11.60	22.30	24.30	11.60	27.5	31.2	43.1	24.4
2.540	2.700	2.6 0	4.4 0	4.700	2.370	4.5	5.2	6.	4. 5
0. 6	0. 1	0. 70	1.163	1.257	0. 3	1.45	1.5	2.07	1.03
2.4 0	2. 13	2.754	4.14	4.46	2.522	3.56	4.01	5.35	4.23
0.3 6	0.3	0.3 7	0.612	0.660	0.3 4	0.4	0.54	0.64	0.63
2.1 0	2.150	2.220	3.420	3.6 0	2.130	2.57	2.77	3.24	3.75
0.46	0.446	0.444	0.72	0.75	0.46	0.4	0.52	0.5	0.7
1.350	1.230	1.240	2.120	2.2 0	1.310	1.32	1.37	1.45	2.25
0.1 0	0.16	0.175	0.304	0.32	0.1 4	0.1	0.2	0.2	0.34
1.210	1.050	1.120	1. 60	2.110	1.210	1.25	1.23	1.24	2.13
0.174	0.164	0.165	0.2 1	0.323	0.173	0.20	0.17	0.17	0.34
1.3 0	0. 41	1.040	3.2 0	3.510	1.460	5.37	3.27	4.16	3.72
0.0 4	0.062	0.051	0.5 7	0.644	0.07	1.35	0.6	1.16	0.6
0.151	2.0	1.50	2.75	1.	0.33	/	/	/	/
0.3 4	0.206	0.200	45.20	35.10	0.417	.13	.07	4.1	21.0
1. 0	0.761	0.717	. 60	.2 0	1. 0	4.50	2.63	3.20	.4
0.500	0.304	0.302	2. 30	3.4 0	0.501	1.7	0.67	1.46	2.5


04 06, 04 26, 04 2 04 17

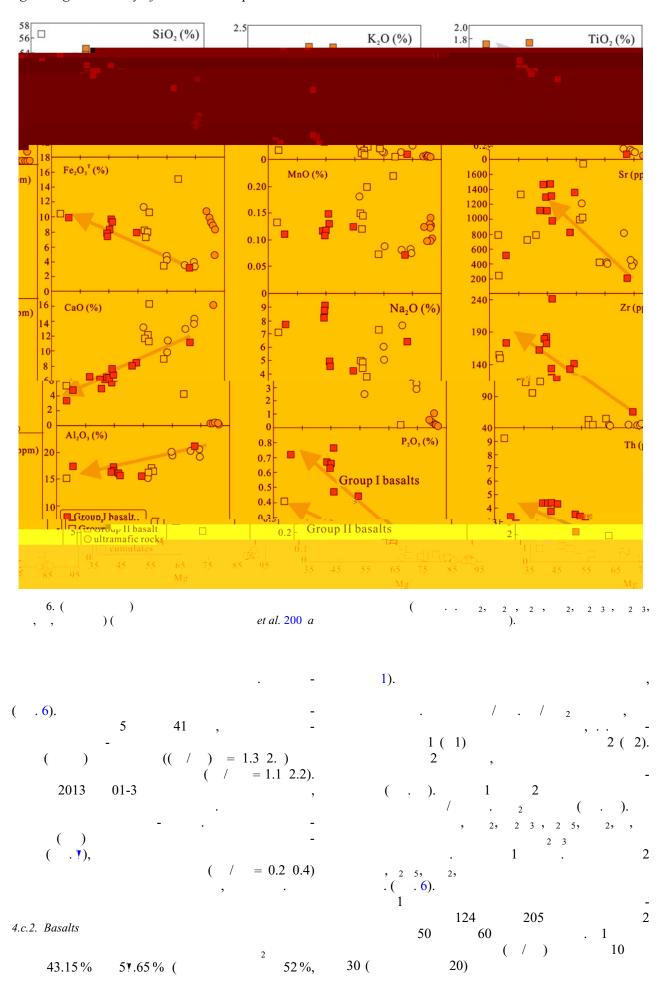
et al. (200 a).

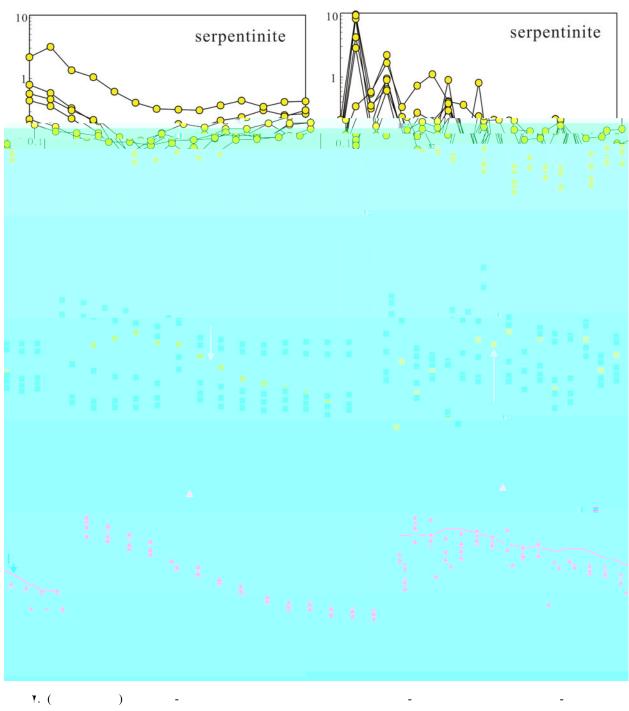
2.

4. (

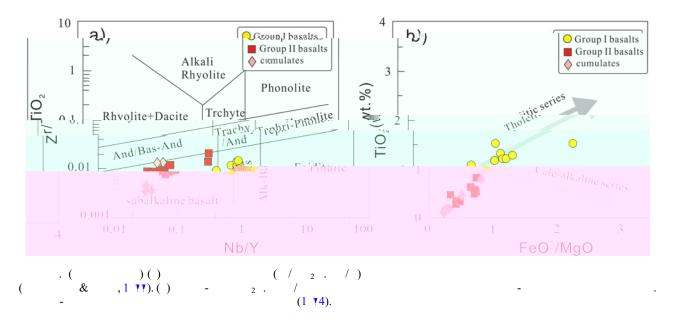
			() ()	' / 6	⁷ / (1σ)	(' / 6)	()	()	14 7 /	143 / 144 (1σ)	(143 / 144)	ε (t)
2013	01 3	(2)	0.3	66 3 2	0.0027	0.704030(2)	0.704015	2.4	10.	0.13 4	0.512 3 (40)	0.512474	6.
2013	01 10	(2	0.5	6 6	0.0024	0.70475 (23)	0.704745	2.37	11.6	0.1235	0.512 0 (43)	0.5124 6	7.1
2013	03 1	(1)	3.1	3 270	0.0335	0.706324(20)	0.706133	4.4	22.3	0.1217	0.512533(47)	0.512214	1.
2013	03 2	(1)	2.	7 1320	0.0063	0.7042 (20)	0.704255	4. 5	2 .6	0.1046	0.51271 (51)	0.512445	6.3
2013	03 3	(1	0.	6 516	0.0452	0.70536 (43)	0.705111	5. Y	36.	0.0 7	0.512707(30)	0.512450	6.4
2013	03 4	(1)	.6			0.704227(51)			24.5	0.1123	0.512 03(53)	0.51250	7.5
ϵ $(t) =$	= 10 000((1	43 /144)	(t)/(14	43 /144) (t)-	·1) ε (t) (' / ⁶)						

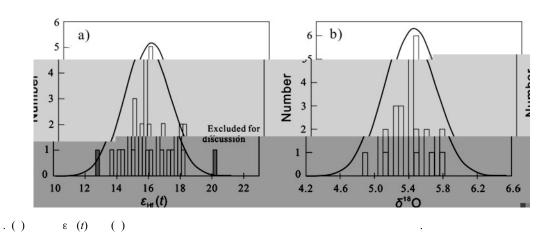
 $, ~~100 ~~200~\mu ~~. ~~(~~2)$

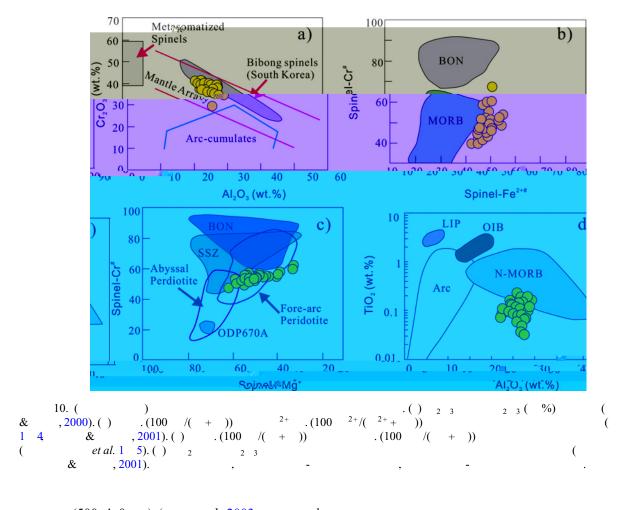

```
Wo
                                                                                             ( 2,
                                                                                                                                                              . 4 ).
                                                                                                                                                                                                                                                                     Diopside Hedenbergite
                                                                                                                                                                            2
                                                                                                                                                                                                                                                                                     Augite
                                                                                                                                                                                                                                                                                                                                 a)
                                                                                                                                            450
 500
21
                                                                                                             1
                                                                                                                                                                                                                                                                                    Pigeonite
401\,\pm\,2
                                                                                                                  235
                                                                                                                                                                                                                                    Cinnoenstate
                                                                                                                                                                                                                                                                                                                    Umoterrosiinte
                                                      401.4\pm1.6
                                                                                                                                           = 1. ) (
                                                                                                                                                                                                                                                                          b)
                                                                                                                                                                                                                                                                                                                                                                        c)
                                        . 4 ),
                                                                                                                                                                                               S in Cpx
                                                                                                                                                       , 1 3).
                                                                                                                                                                                                                53
                                                                                                                                                                                                                                             Non-alkaline
4.b. M. a c . . . . . .
                                                                                                                                                                                                                 Sio
4.b.1. Spinel composition
                                                                                                                                                                                                                                                                         Alkaline
 ( .3).
                                                                                       100 300 μ
                                                                                                                                                                                                                                   0 1.5 3 4.5 6 7.5 9 9.5
                                                                                                                                                                                                                                                                                                                                      0.1
                                                             11
                                                                                                                                                                                                                                             Al<sub>2</sub>O<sub>3</sub> in Cpx
                                                                                                                                                                                                                                                                                                                                  TiO<sub>2</sub> (wt.%)
                                                                                             2 3,
                                                                                                                                                                                                                      5. (
                                                                                                                                                                                                                                                                          )()
                                                                                                                                                                                                                                                    .() 2(%). 23(
                                                                                                            . (100
                                                                                                                                                                                                                                                                                                                                                          2 (%)
                                                             60
                                            44
                                                                                                         . (100 /(
                  25
                                      61.
                                                                                             et al. 2010).
                                                                                                                                                                                                                                                                                                                                 1 (
                                                                                                                                                                                                                                                                                                                                                        1).
                                                                                                                                                                                                                                                                                                                                                        ( . 6).
                                                                                                                                                                                                                                                                                              ( 3 103
                                              et al. 2013).
                         (
                                                                                                                                                                                                                               (5
                                                                                                                                                                                                                                                              )(
                                                                                                                                                                                                                                                                                          1).
                                                                                                                                                                                                                                                                                                                                                     (> 12\%)
                                                                                                                                                                                                                                      2 , 2
4.b.2. Pyroxene compositions
                                                      0.5%)
                  (
                                             / ).
                                                      , 46 55
( .5).
                                                                          2 3,
( .5, ).
                                                                                                                                                                                                                                                                                              , 2014,
                                                                                                                                                                                                                                                                                                                                                            &
                                                                                                                                                                                                                                 , 1 ).
4.c. W_1 = - c_1 c_2 = - a_1 c_2 = - a_2 c_3 = - a_1 c_2 = - a_2 c_3 = - a_2
4.c.1. Serpentinites and cumulates
                                                                                                                                                                                                                        45. 7 %
                                                                                                                                                                                                                                                                     51.27 %,
                                                                                                                                                                                                         _{2} _{3} (3.24 4.6 %), _{2} _{3} (1 .3 1 .6%,
 (> 12 %,
                                                                                                                                                                                                                                                            01-3), ( .54 15.42%),
                                                                                                                                                                                                                              2013
                                                                                                                                                                                                                                                              <sub>2</sub> (2. 1 7.3 %,
                                                                                                          40%), 2 3(
                                                                                                                                                                                                  (0.12 \ 0.34\%),
                                  1.0%), <sup>2</sup> ( 40%), 
1.0%), <sup>2</sup> (0.03 0.06%),
                                                                                                                                       2 (0.04
                                                                                                                                                                                                                                                               2 (0.11 0.46%)
                                                                                                                                                                                                  2013 01-3)
```


2 3

1).


₂ (0.04 0.05 %).


0.2%

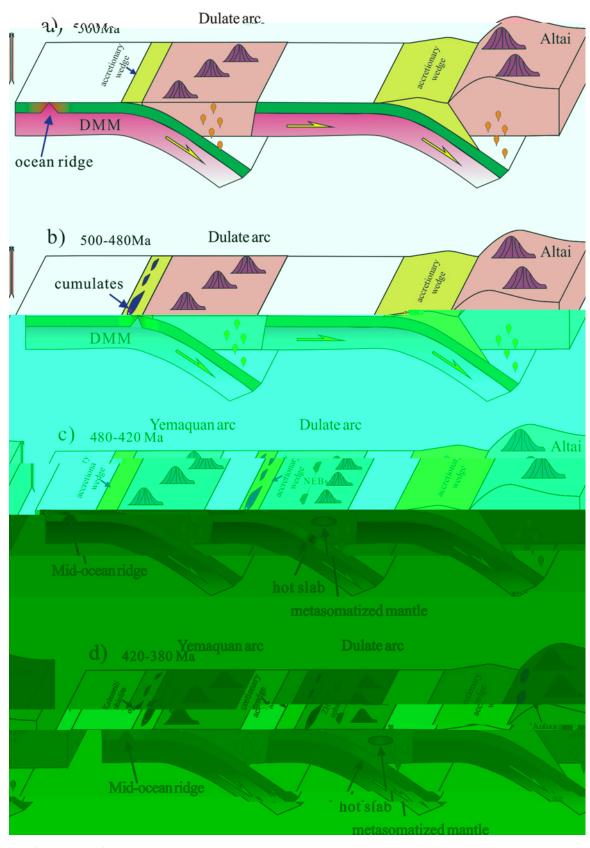


& (1). = 0.70 1.14(. <u>7</u>). **2**. 1 2 7 / 6 1 $(0.0024 \ 0.0452)$ $^{\prime}$ / 6 (0.704030 0.44 0. 7, 2 1 (~ 0.11) . +1.).


```
5. D c
         (2013
                    01)
                                                                                                  Za ba....
                                                                5.a. T
                              13
                                      20.
                  2 5
                                                                                                               c. 4 6
     \epsilon (t) (> 16)
                                                                     401
                                                                (503 \pm 7)
                       \epsilon (t),
                                                                (416 \pm 3)
                                       15.7.
     \delta^1
                                4. 1%
                                           5.73 ‰,
                                                                                                                    et al.
                                                                2012,
                                                                              et al. 200 b,
                                                                                                  . 1).
                                         ).
                                                                         (401
                                                                                                       (4 6
                      \delta^1
                                          5.37 \pm 0.23 \%
                ~400
                                             1.4
                   \epsilon (t)
                                                 6 0
                                                                                               , 1 3).
    20
                                                    et al.
                                                                ( .1),
200 ).
```



(500 4 0) (et al. 2003, et al. 2015,), (430 400) (et al. 200 b, 2014) (370 350) (et al. 2003, et al. 2006).


5.b. O a c a

et al. 2010 , & , 2002,

```
( .12),
         a)
                          Back-arc
basin basalt
Al<sub>2</sub>O<sub>3</sub> (wt.%)
                                                                                      ( .12 ).
                                                                                 et al. (2002)
                      Boninite
                     TiO_2+Cr_2O_3 (wt.%)
                         TiO<sub>2</sub>(wt.%)
                                 E-MORB
                                                                                          ), 2 5 (0.4 0.6%)
                                                                       (11 15,
                                                                                                  60)
                            Teb-rebadd oaslans
                                                                                 , 2001) (
                                                                                              . 13).
                            SSZ-Supra-Subduction Zone basalts
                            WOPB-Within Oceanic Plate basalts
                                                                                                                       _(1)
     SiO<sub>2</sub>/100 (wt%)
                                               Na2O (wt.9
                                                                        , 2002) (2)
      11. (
                2/100
                                                                                                                 et al. 1 6).
                                                                                              1
                                                                                                         , 2007,
                                                                                                                         et al.
                                                                  2011).
                                                                           (0.704120 0.706133)
                                                                                                                \epsilon (t)
                                                                  (+1.
                                                                            +7.5).
                                                                                                              / (3.44 20.4)
                                                                              , (1.51 2.54)
                                                                            & , <u>1</u> 6).
                                                                                            1
                                                                                                                         et al.
            . 11 ).
                                  _{2}/100
                                                                                  , 1 6).
                ( .11 ).
                                                                  2000).
                    ( . <u>7</u>).
                                                                                  , 1 2
                                                                                                et al. 1 6).
                                                                  &
                                                                  (200)
```



```
1.0
          a)
                                                                    460 375
                                                                                               c. 400
    0.8
            Arc
                                                            et al. 2006, 200, et al. 2007, et al. 2007,
                               NEBs
          volcanic
                                                                 et al. 200, 200, et al. 2012,
                                                                                                             et al.
O5 (wt%)
    0.6
                                                            2015).
   0.4
       0.2
                                                                         et al. 200 ).
                                                            2002,
                              TiO<sub>2</sub> (wt%)
                                                                            et al. 2015).
                                                                                                     5. ),
        100
                b) MORB
                                                                                                                 2
                                              NEBs
                                                                       1, 15).
                                                                                     et al. (2007, 200 b)
                     Island Arc Basalts
                           et al. 200).
            0.1
  100
                                                                               , 2007,
                                                                                            et al. 2013).
                               Nb (ppm)
                                                                                                       . 15).
                                                                                          (c. 500
                                                              (1)
                                                            ( . 15 ).
                 Island Arc
                 volcanic rocks
          0.5
                                                              (2)
                                                            (500 4 0
                      0.2
                               0.4
                                                 0.8
                               (Nb/La)<sub>PM</sub>
                                                              . 15 ).
                     )() <sub>2</sub> <sub>5</sub>.()( / )
                                            (1 2)
                                                                                                             (4 0
                                                              (3)
       et al. (1 5),
                                                            420 ),
                                                                                             (45
                                                                                                             et al.
                                                            2015)
                                                            (440 ,
                                                                            et al. 2014)
                et al. (2015)
                                                            ( .15).
400 3 0
```


15. (

```
(4)
                                                    R ≺ c
                                   (420 3 0
                                                        , . 1 4.
    et al. 2014
                    et al. 2015).
                                                                  . Chemical Geology 113, 1 1 204.
                                                                   , . . 2001.
                                                        Journal of Petrology 42, 227 302.
                                                           , . .,     , . . &     , . . 200₹.
                                      . 15 ).
                                                               . Lithos 97, 271
                                                               ., , . . &
                                                        2002.
                  (400 3 0
                                                                                            . Geology
                                                        30, 707 10.
                                                                                    . 200 .
                                                                                      Earth Accretion-
                                                        ary Systems in Space and Time (
                                                         . ), . 1 36.
                                                         , . & , . . 2002.
6. C. . c
                                                           . Geological Magazine 139, 1 13.
                                                          , .1 3.
(1)
  \sim 4 5
                                                        Geological Society of America Bulletin 105, 715 37.
400
                                                           , . . 1 II. Ophiolites.
                                                             , 220 .
                                                                         , . .1 3. .
                                                          , ..&
                                                                              . Geology 21, 547 50.
  (2)
                                                           . Journal of Geological Society, London 149, 56
                                                        , . . . & , . 1 4.
                                                                              . Contributions to Miner-
                                                        alogy and Petrology 86, 54 16.
                                                        , . & , . . . 2003.
(2)_-
  (3)
                                                                                   Ophiolites in Earth
                                                                         & . .
                                                        History (
                                                                                    ), . 43 6 .
                                                         , .&
                                                                     , . 2011.
                                                                           . \,Geological \,Society \,of \,America
                                                        Bulletin 123, 3 7 411.
                                                           . Chinese
                                                        Journal of Geology 50, 140 54 (
                                                                     , . 2000.
                               305
(2011
        06 03-01).
                                                             . Contributions to Mineralogy and Petrology 140,
                                                        2 3 5.
\mathbf{S} , ,
        , a
                                                                      , . . & , . 1 1.
                                                                        . Lithos 27, 25 YY.
        // . . /10.101y/ 0016y56 16000042.
```

,, ,, , . & ,2011	,, ,, ,, ,
Geological Bulletin of China 30, 150 13 (, . 2004.
).	, . Geological Magazine 141,
& ,, , , ,	225 31.
-	
9 Geochimica et Cosmochimica Acta 75 , 504 12 .	, & , . 2010 <i>b</i> .
, ., ,, , & ,	. Geostandards
2001.	and Geoanalytical Research 34, 117 34.
. Nature 410 , 6 !! 1.	, ,, , .& ,2013.
()_	. Chinese Science Bulletin 58,
. Chemical Geology 182,	4647 54.
227 35.	, . & , . 200 . . Lithos 113, 274 1.
, ,	,, ,, ,, ,, , , , ,
, . Journal of Geophysical Research: Solid	. & , 2010.
Earth (1978–2012) 101, 11 31 .	Chinese Science Bulletin 55 , 1535 46.
, . & , . 2000.	, 2003. User's Manual for Isoplot 3.00: A
- 2.1	Geochronological Toolkit for Microsoft Excel 4,
,	73 .
and Petrology 139 , 20 26.	, . , . , . , . , . , . , . , . , .
, , , , , , , , , , , , , , , , , , , ,	, & , 2015.
 , . Geological Bul-	().
letin of China 31, 1267 Y (
).	Gondwana Research, 6 2015.
· · · · · · · · · · · · · · · · · · ·	10.1016/2015.04.004. , .1 74.
,	. American Journal of Science
(). Chinese Science Bulletin (Chinese Version) 59 , 2213 22.	274 , 32 355. , ., ., , .& , .1 5.
,, , & , . 2000.	-
. Transactions of the Royal Society of	(). Geology 23, 51 4. , . 1 . Structure of Ophiolites and Dynamics
Edinburgh: Earth Sciences 91, 1 1 3.	of Oceanic Lithosphere.
, & , 1 0.	, 367 · .
. Journal of Petrology 31, 67 11.	
, ., ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,,,,	Journal of Petrology 38, 1047 14.
, , & , . 2003. . Earth	,, , ., ,, , ., ., .& , ., .& , .
Science Frontier 10, 43 56 (. Acta Pet-
). ,, , , & , . 2001.	rologica Sinica 25, 16 24 (
	, , , , , , , , , , , , , , , , , , , ,
, - . Journal of Petrology 42 ,	& , 200 b.
655 1 1.	Acta Petrologica Sinica 25, 14 4 1 (
, . 1 6.). ,, , , , , & , 200¶.
Nature 380 , 23 1 40.	40 /3
, ,, , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	Acta Patrologica Sinica 22 1624
, . & , . 2000	, . Acta Petrologica Sinica 23, 1621
. Tectono-	, . , , , , , , , , & ,
physics 326 , 255 6	. 2002. , - , , 176
2010 <i>a</i> .	. Proceedings of the Ocean Drilling Program, Sci-
50	entific Results, vol. 176 (, , , ,
- Lithes 114 1 15	

,, ,, , . & , 200 .	- . Science in China Series D – Earth
- , - -	Sciences 52 , 1345 5 .
. Chinese Science Bulletin 14, 21 6 1.	, & , 1 .
,, ,, , ., & ,	. Magmatism in the Ocean Basin (&),
, . Lithos 117, 1 20 .	the Ocean Basin (&), .52 4 . ,
, .,	.42.
Journal of Asian Earth	, ., , .& , .200 .
Sciences 30 , 666 5. , 200 .	. Chemical Geology 247 , 352 3.
. Lithos 100, 14 4 .	, ., , ., ,, ,, , & , 200¶.
, 2014.	
. Elements 10 , 101 . , . & , . 2001. , ,	. Acta Petrologica Sinica 23, 1 33 44 ().
- ,	,, ,, , & , , , ,
2.1 ,	1
,	to Mineralogy and Petrology 133, 1 11.
, ., , , , .& , .& , . 2013	, ., , , , , , , , , , , , , , , , , , , ,
. 2013.	,
, , - 	. Journal of Geology 114, 135 51.
Gondwana Research 24, 3 2 411.	, ., ,, ,, , ., , ., , , ,
,, ,, , ., , .& , . 1 6	. Lithos 110, 35 Y2.
Journal of Petrology 37, 6 3 126.	, ., , & , 2012.
, ., , ., , ., ., ., ., ., ., ., ., ., .	. Earth-Science Reviews 113, 303 41.
, , -	- . Chemical
. Precambrian Research 231, 301 24.	Geology 20 , 325 43.
, ., ,, , ., ,	,, , ., , ., , ., ., .& , 2002.
. & , . 2012.	. Journal of Geology 110, 71 3.
. Precambrian Research 192 195, 1 0 20 .	, ., ,, ,, , & , 2006.
,, ,& , .1 1	. Geology in China 33, 476 6 ().
. Philosophical Transactions of the Royal Society of London 335, 311 2.	, . , . , . , . , . , & , .
, ., , . , . , . , . , . , . ,	2014.
-	()? Geoscience Frontiers 5, 525 36.
. Nature 377 , 5 5 600. ,, , & , 1 3.	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, .,
. <i>Nature</i> 364 , 2 30 7 .	, -
,, ,, ,, , . & , ,	. Journal of Asian Earth Sciences 32, 102 17.
- , ().	,, ,, , & , 2013.
. Lithos 206 207, 234 51.	Gondwana Research 23, 1316 41.
, 2002 Reviews of Geophysics 40 , 3-1 3-3 .	,, ,, , ., , ., , ., , ., , .,
, ,, , , , , , , , , , , , , , , , , , ,	
, , , , ,, , & , 200 .	. Journal of Geological Society, London 161, 33 42.

200 a	Chemical Geology 242 , 22 3 . , ., ,, ,& ,2006
International Journal of Earth Sciences 98, 11 217.	Acta Geologica Sinica 80 , 254 63 (
,, , , , , , , , , , , , , , , , ,	& ,
. American	Chinese Science Bulletin 48, 2231 5.
Journal of Sciences 309, 221 \(\) 10. , . 1 3. Regional Geology of the Xinjiang	,, , ., ,, ,& 2013.
Uygur Autonomous Region	,
, .2 145 (). , ,, ,, , ., & , 2015.	. Lithos 179, 263 14.
, 2013.	,, , ,
. Journal of Asian Earth Sciences	. Journal of Asian Earth Sciences 52 , 11 7 33.
113, 75 .	,, ,, ,
, , , , , , , , , , , , , , , , , , ,	, 200 .
, .2012.	gica Sinica 24 , 1054 5 (
. Gondwana Research 21, 246 65. , ., ., ., ., ., ., ., ., ., ., ., ., .,). , . & , 1 6. Annual Review of Earth and Planetary Sciences 14 4 3 5 1.